主辦單位
ASROC
協辦單位
ASIAA
贊助單位
MOST
會徽Logo
名稱Title
2020天文年會
中研院天文所 國際會議廳

論文摘要

Saving low-mass planets from orbital migration in dusty disks

[ Poster ]

He-Feng Hsieh (NTHU, ASIAA); Min-Kai Lin (ASIAA)

Disc-driven planet migration is integral to the formation of planetary systems. In standard, gas-dominated protoplanetary discs, low-mass planets and/or planetary cores undergo rapid inwards migration and are lost to the central star. However, several recent studies indicate that the solid component in protoplanetary discs can have a significant dynamical effect on disc-planet interaction, especially when the solid-to-gas mass ratio approaches unity or larger and the dust-on-gas drag forces become significant. In this work, we study planet migration in dust-rich discs via a systematic set of high-resolution, two-dimensional numerical simulations. We show that the inwards migration of low-mass planets can be slowed down by dusty dynamical corotation torques. We also identify a new regime of stochastic migration applicable to discs with dust-to-gas mass ratios Z≳0.3 and particle Stokes numbers St≳0.03. In these cases, disc-planet interaction leads to the continuous development of small-scale, intense dust vortices that scatter the planet, which can potentially halt or even reverse the inwards planet migration.