會徽Logo
名稱Title
2021天文年會
國立嘉義大學蘭潭校區
5月21日至23日

論文摘要

The earliest stage of protostellar multiplets? Detection of substructures inside highly dense prestellar core ‘kernel’

[ Oral ]

Dipen Sahu (ASIAA), Sheng-Yuan Liu (ASIAA) , Tie Liu (SHAO), Naomi Hirano (ASIAA), Chin-Fei Lee (ASIAA), K. Tatematsu (NRO, NAOJ) and the ALMASOP team

Prestellar cores are self-gravitating dense and cold structures within molecular clouds where future stars are born. They are expected, at the stage of transitioning to the protostellar phase, to harbor centrally concentrated dense (sub)structures that will seed the formation of a new star or the binary/multiple stellar systems. Characterizing this critical stage of evolution is key to our understanding of star formation. In this work, we report the detection of high density (sub)structures on the thousand-au scale in a sample of dense prestellar cores. Through our recent ALMA observations towards the Orion molecular cloud (ALMASOP project), we have found five extremely dense prestellar cores, which have centrally concentrated regions ~ 2000 au in size, and several 10^7 cm^-3 in average density. Masses of these centrally dense regions are in the range of 0.30 to 6.89 Msun. For the first time, our higher resolution observations (0.8" ~ 320 au) further reveal that one of the cores shows clear signatures of fragmentation; such individual substructures/fragments have sizes of 800 -1700 au, masses of 0.08 to 0.84 Msun, densities of 2 - 8x 10^7 cm^-3, and separations of ~ 1200 au. The substructures are massive enough (>0.1 Msun) to form young stellar objects and are likely examples of the earliest stage of stellar embryos which can lead to widely (~ 1200 au) separated multiple systems.