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國立中央大學天文研究所 

 

摘要 
依據廣義相對論，光線的行進路徑會受重力影響而彎曲。若遙遠的星體與地

球之間有大質量的物質存在，在類似光線經過透鏡聚焦的情形下，我們會觀測到

圓弧狀的天體或是雙重甚至多重影像。這種放大現象可以幫助我們更了解高紅移

且微弱的星系。 

目前大部份的天文學家用目視或基於星系團的稠密度來搜尋重力透鏡事件，

而我們則利用星體形狀資訊進行物體的辨識。由於這種新的思維方法是基於形狀

參數，理論上是可以偵測出由暗星系團或暗物質所造成的重力透鏡現象。 

我們根據圖像的『第二階中心矩』守恆作出『橢圓形誤差』的形狀參數之定

義，並使用它來篩選星體。接下來是要對可疑的星體做線性和弧形回歸。最後根

據以上兩種回歸的誤差來判別它是否是重力透鏡作用的現象。由於我們所使用的

回歸法和形狀參數，與圖像的矩函數有關係，在資料有效的運用下使得整個運算

過程很快。 

 

Data Mining for Gravitational Lenses 
Tan Sze-Yeong, Ip Wing-Huen 

Institute of Astronomy, National Central University 

 

Abstract 
The discovery of gravitational lensing events are very import in the study of 

cosmology. Unlike the traditional method of discovering the strong lenses which based 

on direct visual inspection on over-dense region of galaxy clusters or photometry of 

caustic sources, our method is based on morphology. Since our method is 

shape-motivated, it will not only relief the task of astronomers but also capable of 

detecting the "dark lenses". 

We have defined a shape parameter to select the candidates efficiently. Through 

error analysis the arcs produced by lenses can be identified .The algorithm developed in 

this work has been tested on two of the gravitational lensing events found in the RCS 

and proved to be successful. 

 

關鍵字（Key words）：重力透鏡（gravitational lensing）、矩分析（moments analysis）、

merging galaxies、arc fitting 
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1. Introduction 

1.1 Gravitational Lensing as 

Cosmological Probe 

The number of gravitational lenses we 

expect to see depends very muchon the 

large-scale geometry and the evolutionary history 

of the universe. Thus the lens statistics can be 

used to constrain the cosmological parameters by 

comparing the number of lenses to that predicted 

by various models. 
 

 
Fig 1. The maxima of the cross sections for four 

different cosmologies differ by more than an 
order of magnitude. The Figure shows that 
τCDM model produce the fewest arcs, and 
clusters in the open model produce the most. 
The redshift ranges where σ(z)>0 are larger in 
O/ΛCDM than in S/τCDM. (Bartelmann et al. 
1998). 

 

Bartelmann et al (1998) showed that the 

influence of the evolutionary history of 

cosmology on arc statistics is dramatic: for large 

arcs with length-to-width ratio ≥10, the optical 

depth is largest for OCDM(Ω0=0.3, ΩΛ=0). The 

optical depth is lower by about an order of 

magnitude for ΛCDM, and by about two orders of 

magnitude for s/τCDM, relative to OCDM. 

The average cross sections evaluated by 

averaging the cross section over the three 

projection directions for different cosmologies are 

shown in Figure 1. 

2. Methodology 

2.1 Basic Idea - Recognition by Fitting 

Error 

Astronomers has been urged to do more 

lens surveys since the number of discovered 

lenses is still too few. However, searching the 

gravitational lensing events in large amount of 

wide field images is a laborious and time- 

consuming task. Therefore, the development of 

fast and reliable algorithm is more desirable. 

Since galaxy clusters are the most effective lenses 

for the occurrence of lensing events, searching for 

the over-dense region becomes a good strategy 

(Gladder and Yee, 2002 & Gladder et al. 2003). 

Alternatively, we can approach this problem by 

means of shape analysis. 

We attempt to recognize the shape with an 

bimodal approach; a line and an arc are fitted to 

the unclassified object. Since fitting always comes 

with errors, we could just compare the errors and 

find out which kind of fitting would lead to a 

smaller amount of error; it means that the object is 

best described by that method. It could be shown 

that the principal axis along the semi-major axis 

of the objects is the best fitted line. The fitting 

error is thus the principal moment of inertia along 

semi-minor axis, a common parameter of the 

moment analysis. 

Our algorithm involves image thre- 

sholding, moment (shape) analysis and arc fitting. 

There are described in the follow sections. 

 

2.2 Image Segmentation by Local 

Thresholding 

In local thresholding, the original image is 
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partitioned into many smaller sub-images and a 

threshold (sky backgroud+1.5σsky) is applied to 

each of these sub-images. Furthermore, the effect 

of discontinuity in graylevel is reduced by a 

statistical approach. For every sub-images, five 

threshold values are obtained by re- computing 

the background intensity for its four adjacent 

regions and an additionally enlarged region in situ. 

The final value is simply taken as the median of 

those five threshold values. 

 

2.3 Moment Analysis and Shape 

Parameters 

2.3.1 Definition of Moments 

For an image f(x,y), the moment of order 

(p+q) is defined as  

( )∑∑= yxfyxm qp
pq ,  

In order to make the moments independent 

of the image reference system, they are often 

evaluated with respect to the first moment 

(centroid). These moments are called central 

moments and are defined as 

( ) ( ) ( )∑∑ −−= yxfyyxx qp
pq ,µ    (1) 

,...3,2,1,0, =qp  

00

10

m
mx = ; 

00

01

m
my =  

One can easily verify that 00m=µ  

and 00110 == µµ . 

 One of the simplest and widely used shape 

parameter defined by moments is called principle 

moments of inertia. They are a measure of 

variance of image intensity distribution about the 

centroid under a new reference frame such that 

11µ  is vanished. The mathematical relations of 

20µ , 02µ  and 11µ  to the principle moments of 

inertia (I1, I2) are given below: 
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2.3.2 Best-Fit Ellipse 

Best-fit Ellipse is an ellipse whose second 

geometrical moment equals to that of the object. 

According to the moments of a general ellipse,  
3
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where a and b represent the lengths of the 

semi-major and semi-minor axes of a best fitted 

ellipse, respectively. They can be obtained readily 

with given Imin and Imax. 
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2.3.3 Dissimilarity 

We define the dissimilarity of an object to 

an ellipse as below 
( ) ( )

( )EOarea
EOareaEOareaitydissimilar

U

IU −
=    (4) 

O denotes the area enclosed by the object and E is 

for its best fitted ellipse. 

This parameter is always bounded by 0 & 1. 

Equation 4 could be expressed as  

Fig 2. An arbitrary shape super-imposed with its 
best-fit ellipse.
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For an object which does not intersect  

with its best-fit ellipse, it has dissimilarity of 1. 

While the object is a perfect ellipse, 

( ) ( )EOareaEOarea IU = ; it has dissimilarity of 0. 

It is worthwhile to mention that error 

becomes larger when the best-fit ellipse meets an 

curved arc-let. This is because the centroid of 

curved object tends to shift outwardly. As shown 

in Figure 3, the reconstructed ellipse is shifted to 

one side leaving a considerable amount of 

non-overlapping area. 

 
Fig 3. An arc super-imposed with its best-fit ellipse. 

 

2.3.4 Examples 

We have constructed a pair of ellipses with 

different ellipticities and a circular arc as test 

shapes for our shape parameter. They were 

corrupted with noises in different levels before 

performing the shape analysis. The results are 

shown in Figure 4. Best-fit ellipses were 

rendered in light gray and stacked under the 

test objects for demonstration.  

 

2.4 Selection of Candidates by Using  

Dissimilarity and Eccentricity 

A typical scatter-plot of a RCS image is 

depicted in Figure 5. From the diagram we 

could see that most of the stellar objects   

have a fairly low dissimilarity (~.0.06) and 

eccentricity around 0.2; it means that most of 

the objects look like regular ellipse. Note that the 

eccentricity we use here is ba1−  where a and 

b are the length of semi-major and semi-minor of 

the best fit ellipse. The density of the data points 

falls with the increase of dissimilarity and 

eccentricity. By experiences, we consider the 

object as a candidate if its dissimilarity > 0.15 or 

eccentricity > 0.65. Under this rule, about 13% of 

the objects will be extracted as candidates for 

further analysis.  
 

 

 

 

 
Fig 4. The figure shows two test objects. Noises with 

different extent was added to the test objects 
and best-fitted ellipse for each case were 
rendered in light Gray. The measurement of 
dissimilarity are also stated. 

Fig 5. The typical scatter-plot of a RCS image in which the 
x-axis is dissimilarity and the y-axis is eccentricity. 
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2.5 Estimation of the Circular Arc  

Center and Its Radius 

2.5.1 Landau's Algorithm 

In this method, the sum of the squares of the 

geometrical distances between data points and 

the center of a circle are optimized in least 

squares sense, this is so the called geometric fit. 

Given a set of points (x1, y1),···, (xN, yN), and 

u1, ···,uN denoted as vectors to each of the points 

and a circle with a radius of R and a center at 

r=(rx, ry); the error ir∆  can be defined by  
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After minimizing the function ( )rRe ,  

with respect to R and r , we get 
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Since this is a nonlinear least squares 

problem, the solution will be solved by iteration. 

2.5.2 Thomas-Chan's Algorithm 

The algebraic solutions for the circular 

fitting are exact but not accurate. They are used as 

the initial values for the iterative Landau's 

algorithm (geometric fit).  

The algebraic fit we adopted in this study  

is the Thomas-Chan's Algorithm. Instead of 

minimizing the sum of the squares of geometric 

distances, this method minimizes the sum of the 

squares of algebraic distances 
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3. Data Processing 

3.1 The Red-Sequence Survey (RCS) 

The Red-Sequence Cluster Survey(RCS) is 

a galaxy cluster survey designed to provide a 

large sample of optically selected 0.1 < z < 1.4 

clusters, spread over a wide range of RA and DEC 

in order to facilitate follow-up. The images was 

acquired at the CFHT and CTIO 4m telescopes 

using mosaic camera. It covered 100 square 

degrees of two colors (R and z') imaging, with a 

5σ depth ~ 2mag past M* at z = 1. The primary 

scientific drivers of this survey are a derivation of 

Ωm and σ8 and a study of cluster galaxy evolution 

with a complete sample. 

 

3.2 Incidence of Strong-Lensing in the 

RCS Survey 

There are a total of eight strong-lensing 

systems found in RCS datasets (Gladders et al. 

2003). The arcs were detected by visual 

examination of the over-dense regions with red 

galaxies. Two of the strong-lenses are discussed 

Fig 6. This figure demonstrate the fitting of 
circular arc with Landau's algorithm, the 
location of the center at each iteration is 
shown as well.
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here, they will be used as test images for our 

system. 

 

3.3 RCS 0224.5-0002 

This is the most obvious case of strong 

lensing in the RCS. At a redshift as high as z = 

0.773, it is the highest redshift cluster yet known 

with significant strong lensing. The outermost 

large arc in RCS 0224.5-0002 has been 

spectroscopically confirmed to be at z = 4.8786. 

The RCS 0224.5-0002 is shown to have a 

central velocity dispersion of ~ 1000 kms-1 by 

using singular isothermal sphere model. This 

estimation means that it is one of the most 

massive galaxy clusters known at z ~ 0.8. 

 
Fig 7. RCS 0224.5-0002, the strongest lensing in the RCS. 

The four putative lensed sources are label "A" - 
"D". 

 

3.4 RCS 1419.2+5326 

RCS 1419.2+5326 is a spectroscopically 

confirmed z ~ 0.64 cluster which produces two 

obvious giant arcs. However, the arcs are very 

different in radial position and the fainter one is 

marginally redder than the other. As a result, it 

has been suggested that there are correspond to 

two different background sources, with the fainter 

one pertaining to a source at higher redshift than 

the brighter one. 

 
Fig 8. RCS 1419.2+5326, a strong-lensing system with 

spectroscopically confirmed z=0.64 cluster and 
two obvious arcs. 

 

4. Data Processing Pipeline 

The input images are converted into binary 

form after local thresholding as described in 

section 2.2 and followed by an morphology- 

opening operation with a 3×3 square block 

structure element. Geometrical moments and 

shape parameters are determined for objects larger 

than 30 pixels. They will be designated as 

candidates if their dissimilarity are greater than 

0.15 and eccentricity higher than 0.65 (Figure 5). 

 
Fig 9. Data processing pipeline 
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The candidates are then further analyzed 

by arc-fitting algorithm. Those with their 

arc-fitting error greater than their own 

principle moment of inertia are classified 

as curved objects. Finally, a simple 

elimination rules is applied to lower the 

number of spurious detections before 

storing in image database. Those rules 

are: 

(1) Discard object if its effective 

width is smaller than 3.5 

pixels. 

(2) Discard object if its fitted 

radius is smaller than 17 

pixels. 

(3) Discard object if its radius 

falls into the object itself. 

This could remove artifacts 

caused by bright stars. 

Finally, the candidates are verified 

visually by retrieving the data from the 

image database. 

 

5. Results of the Test Images 

5.1 Result of RCS 0224-0002 

Our program detected 177 candidates in 

RCS 0224-0002 and 5 of them were suggested to 

be possible arcs. 

 

5.2 Result of RCS 1419.2+5326 

For RCS 1419.2+5326, 132 candidates has 

been selected and 10 of them were suggested to 

be possible arcs. As shown in Figure 11, the big 

arc was recognized. However, we failed to  

detect the smaller arc as it is morphologically 

inconspicuous. Incidentally, one faint and curved 

object without cluster core was detected in this 

image also. 

 

5.3 Parameter Spaces of The Detected 

Arcs 

The typical scatter-plot of a RCS image 

imposed with the detected arcs mentioned before 

is depicted in Figure 13. It shows that the arcs 

have high dissimilarity and ellipticity compare to 

the ordinary stellar objects. Both of them have 

Fig 10. Detection of the primary arc in RCS 0224-0002. 

Fig 11. Detection of the giant arc in RCS 1419.2+5326. 

Fig 12. the faint and curved object in the image of RCS 1419.2+5326.
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been captured successfully by our selection rules 

on parameter spaces. 

 

6. Discussion 

Our program was written in ANSI C and 

compiled with GNU C/C++ Compiler version 

3.3.2. The processing time for a single image is 

about 13 s on a Linux platform with Pentium-4 

2.4GHz and 1GB of memory. 

The algorithm is fast because of the 

following reasons: 

(1) The arc fitting algorithm is only 

performed on suspicious candidates 

which are only a fraction of the total 

number of the detected objects.  

(2) The determination of the best-fit 

ellipse and dissimilarity are straight 

forward and require very low 

computation power.  

(3) The convergence rate of the Landau's 

algorithm is improved by taking the 

algebraic solution as the initial values. 

In spite of the fast processing speed of our 

program, the number of possible arcs suggested 

by the system is still too high. The false alarms 

are mainly due to the blended objects (close 

encounter). Therefore a deblending procedure is 

indispensable.  

Due to the selection of threshold value, in 

some cases (Figure 10) some arcs does not in the 

corresponding binary image. One possible ways 

to improve this problem are: 

(1) to develop a new algorithm to 

determine the optimal threshold, such 

that lesser amount of faint structures 

will be missed. 

(2) to improve the accuracy of back- 

ground estimation by some other 

schemes. 
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